Exploring the accessible conformations of N-terminal acetylated α-synuclein.
نویسندگان
چکیده
Alpha synuclein (αsyn) fibrils are found in the Lewy Bodies of patients with Parkinson's disease (PD). The aggregation of the αsyn monomer to soluble oligomers and insoluble fibril aggregates is believed to be one of the causes of PD. Recently, the view of the native state of αsyn as a monomeric ensemble was challenged by a report suggesting that αsyn exists in its native state as a helical tetramer. This review reports on our current understanding of αsyn within the context of these recent developments and describes the work performed by a number of groups to address the monomer/tetramer debate. A number of in depth studies have subsequently shown that both non-acetylated and acetylated αsyn purified under mild conditions are primarily monomer. A description of the accessible states of acetylated αsyn monomer and the ability of αsyn to self-associate is explored.
منابع مشابه
The influence of N-terminal acetylation on micelle-induced conformational changes and aggregation of α-Synuclein
The biological function of α-Synuclein has been related to binding to lipids and membranes but these interactions can also mediate α-Synuclein aggregation, which is associated to Parkinson's disease and other neuropathologies. In brain tissue α-Synuclein is constitutively N-acetylated, a modification that plays an important role in its conformational propensity, lipid and membrane binding, and ...
متن کاملCopper binding to the N-terminally acetylated, naturally occurring form of alpha-synuclein induces local helical folding.
Growing evidence supports a link between brain copper homeostasis, the formation of alpha-synuclein (AS)-copper complexes, and the development of Parkinson disease (PD). Recently it was demonstrated that the physiological form of AS is N-terminally acetylated (AcAS). Here we used NMR spectroscopy to structurally characterize the interaction between Cu(I) and AcAS. We found that the formation of...
متن کاملThe Impact of N-terminal Acetylation of α-Synuclein on Phospholipid Membrane Binding and Fibril Structure*
Human α-synuclein (αS) has been shown to be N terminally acetylated in its physiological state. This modification is proposed to modulate the function and aggregation of αS into amyloid fibrils. Using bacterially expressed acetylated-αS (NTAc-αS) and endogenous αS (Endo-αS) from human erythrocytes, we show that N-terminal acetylation has little impact on αS binding to anionic membranes and thus...
متن کاملMechanistic Insight into the Relationship between N-Terminal Acetylation of α-Synuclein and Fibril Formation Rates by NMR and Fluorescence
Aggregation of α-synuclein (αSyn), the primary protein component in Lewy body inclusions of patients with Parkinson's disease, arises when the normally soluble intrinsically disordered protein converts to amyloid fibrils. In this work, we provide a mechanistic view of the role of N-terminal acetylation on fibrillation by first establishing a quantitative relationship between monomer secondary s...
متن کاملImpact of N-Terminal Acetylation of α-Synuclein on Its Random Coil and Lipid Binding Properties
N-Terminal acetylation of α-synuclein (aS), a protein implicated in the etiology of Parkinson's disease, is common in mammals. The impact of this modification on the protein's structure and dynamics in free solution and on its membrane binding properties has been evaluated by high-resolution nuclear magnetic resonance and circular dichroism (CD) spectroscopy. While no tetrameric form of acetyla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FEBS letters
دوره 587 8 شماره
صفحات -
تاریخ انتشار 2013